303 | 0 | 3 |
下载次数 | 被引频次 | 阅读次数 |
以双酚A型环氧树脂和邻甲酚醛环氧树脂复配作为基体树脂,双氰胺为固化剂,咪唑2E4MZ为促进剂,无溶剂法浸胶制备玻纤布半固化片。探讨了基体树脂和促进剂对半固化制备工艺的影响,着重研究了无溶剂法玻纤布浸胶工艺和半固化片制备工艺。研究结果表明:当w(双酚A型环氧)=15%、w(酚醛环氧704)=75%、w(双氰胺)=10%(相对于浸胶总质量而言),w(2E4MZ)=6%(相对于双氰胺质量而言),涂布机温度为110℃下浸胶可达到完全浸润玻纤布;半固化工艺为130℃/9 min时,可得到具有高的分解温度(360℃)、玻璃化转变温度(165℃),耐浸焊性时间长(242 s),击穿电压(46 kV)、介电常数(4.35)、剥离强度(1.45 N/mm)优异的玻纤布半固化片覆铜板。
Abstract:Using bisphenol A epoxy resin and o-cresol formaldehyde epoxy resin as matrix resin,dicyandiamide as curing agent,imidazole 2 E4 MZ as accelerator,the glass fiber cloth prepreg was prepared by solvent-free dipping process. The influence of matrix resin and accelerator on the semi-curing preparation process was discussed,and the solvent-free dipping process of glass fiber cloth and the preparation process of prepreg were mainly studied. The research results showed that when w(bisphenol A epoxy)=15%,w(phenolic epoxy 704)=75%,w(dicyandiamide)=10%(relative to the total mass of dipping glue),w(2 E4 MZ)=6%(relative to the mass of dicyandiamide),and when the coating machine temperature was 110 ℃,the glass fiber cloth could be fully impregnated with the dipping glue. When the semi-curing process was 130 ℃/9 min,the glass fiber prepreg copper clad laminate was obtained with high decomposition temperature(360 ℃),glass transition temperature(165 ℃),long soldering resistance time(242 s),and excellent performance of breakdown voltage(46 kV),dielectric constant(4.35)and peel strength(1.45 N/mm).
[1]祝大同.粘结片浸渍加工技术理论的研究进展[J].覆铜板资讯,2015(1):19-28.
[2]马建,何继亮,任科秘,等.无卤覆铜板用半固化片流变特性的改善及其覆铜板性能研究[J].覆铜板资讯,2018(1):40-43.
[3] CHEN Y,CHEN Y,WANG J,et al. Enhancing adhesion performance of sputtering Ti/Cu film on pretreated composite prepreg for stacking structure of IC substrates[J].Composites Part B:Engineering,2019,158:400-405.
[4]张挺.无溶剂法制备环氧玻纤布覆铜板的研究[D].西安:西安科技大学,2017.
[5] KUMAR S A,DENCHEV Z,ALAGAR M. Synthesis and thermal characterization of phosphorus containing siliconized epoxy resins[J].European Polymer Journal,2006,42(10):2419-2429.
[6] KUMAR A,DENCHEV.Development and characterization of phosphorus-containing siliconized epoxy resin coatings[J].Progress in Organic Coatings,2009,66(1):1-7.
[7] AHMAD S,GUPTA A P,SHARMIN E,et al. Synthesis,characterization and development of high performance siloxane-modified epoxy paints[J]. Progress in Organic Coatings,2005,54(3):248-255.
[8]杨维生.高频多层PCB用粘结片现状及展望[J].覆铜板资讯,2016(5):17-21.
[9] PARK H S,YANG I M,WU J P,et al.Synthesis of silicone acrylic resins and their applications to superweatherable coatings[J].Journal of Applied Polymer Science,2001,81:1614-1623.
[10] WANG D C,CHANG G W,CHEN Y. Preparation and thermal stability of boron-containing phenolic resin/clay nanocomposites[J].Polymer Degradation&Stability,2008,93(1):125-133.
[11]莫杞方. 2017年覆铜板原材料行情盘点及未来走势[J].覆铜板资讯,2018(1):6-13.
[12]傅伟,蔡浩鹏,吴熊,等.交联密度对环氧树脂低温性能及液氧相容性的影响[J].热固性树脂,2018,33(5):31-34.
[13]李会录,霍翠,祁向花,等.摄像头模组粘接用UV/热双固化胶粘剂的研制[J].绝缘材料,2018,51(8):6-11.
[14]高艳茹.覆铜板新国标GB/T 16315—2017《印制电路用覆铜箔聚酰亚胺玻纤布层压板》解读[J].覆铜板资讯,2018(5):1-3.
[15]韩江凌,刘文,邵康宸,等.高导热EP/铜粉导电胶的研制[J].中国胶粘剂,2014,23(6):25-28.
[16]李鼎,李佳玉.含椭球纳米颗粒复合介质的等效介电常数[J].航空动力学报,2019,34(3):584-591.
基本信息:
DOI:10.13416/j.ca.2020.01.005
中图分类号:TQ171.777.7
引用信息:
[1]李涛,李会录,张挺等.无溶剂浸胶制备玻纤布半固化片工艺研究[J].中国胶粘剂,2020,29(01):22-26.DOI:10.13416/j.ca.2020.01.005.
基金信息:
国家自然科学基金资助项目(51903207,21204072); 陕西省重点研发计划项目(2018GY-115,2018GY-174); 陕西省留学人员科技活动择优项目(2017030)