nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2020, 05, v.29 10-14+28
聚异丁烯/甲基乙烯基硅橡胶互穿结构及其动态流变性能研究
基金项目(Foundation): 广西自然科学基金(2018GXNSFAA281220)
邮箱(Email):
DOI: 10.13416/j.ca.2020.05.004
摘要:

采用机械热熔共混法制备了聚异丁烯(PIB)/甲基乙烯基硅橡胶(VMQ)共混物。通过差示扫描量热仪(DSC)、扫描电镜(SEM)以及旋转流变仪等表征手段,研究了不同配比PIB/VMQ共混物的结构及其加工性能。研究结果表明:PIB/VMQ共混物形成的是基本不相容的两相结构,但在相界面处存在分子链扩散。不同配比共混物的储能模量(G′)和损耗模量(G″)有明显的差别,表明相结构有明显区别;共混体系的G′和G″在低频区随剪切频率的增加而增加,在高频区呈现减缓甚至降低的趋势,其中PIB∶VMQ=70∶30体系的G′和G″最大;复数黏度随剪切频率的增加而降低,PIB∶VMQ=70∶30体系值最大,表明在VMQ含量为30份时能够形成互穿网络型双连续相结构。力学损耗因子(tanδ)表明:在低频区,VMQ的加入改善了材料的加工性能;在高频区,VMQ的加入使得材料的加工性能有所下降。

Abstract:

Polyisobutylene(PIB)/methyl vinyl silicone rubber(VMQ)blends were prepared by mechanical hot melt blending process. The structure and processing properties of different proportions of PIB/VMQ blends were studied by means of differential scanning calorimetry(DSC),scanning electron microscopy(SEM)and rotational rheometer. The research results showed that the PIB/VMQ blend formed a two-phase structure which was basically incompatible,but there was molecular chain diffusion at the phase interface. There were significant differences in storage modulus(G′)and loss modulus(G″)among different proportions of blends,indicating that the phase structure was obviously different. The G′ and G″ of the blend system increased with the increase of shear frequency in the low frequency region,and slowed down or even decreased in the high frequency region,in which the G′ and G″ of the blend system with PIB∶VMQ=70∶30 had the largest value. The complex viscosity decreased with the increase of shear frequency,and the system with PIB∶VMQ=70∶30 had the largest value,which indicated that the interpenetrating network type bi-continuous phase structure could be formed when the VMQ content was 30 phr.The mechanical loss factor(tanδ)indicated that the addition of VMQ improved the processing properties of the material in the low frequency region,while in the high frequency region,the addition of VMQ reduced the processing properties of the material.

参考文献

[1]JEFFREY A G,KURT J K,BENJAMIN J P,et al.Effect of sample size on solvent extraction for detecting cocontinuity in polymer blends[J].Polymer,2003,45(2):423-428.

[2]赵剑,许忠斌,冯连芳.PA6/PS双连续相的临界组分比及相形态研究[J].材料工程,2006(8):36-39.

[3]CASTRO M P,ROCHAZKA F,CARROT C.Cocontinuity in immiscible polymer blends:A gel approach[J].Journal of Rheology,2005,49(1):149.

[4]朱健,戚嵘嵘,洪玉琢,等.聚乳酸/液态聚异丁烯共混物的研究[J].工程塑料应用,2014,42(12):6-10.

[5]LYU Y,PANG J G,GAO Z J,et al.Characterization of the compatibility of PVC/PLA blends by aid of rheological responses[J].Polymer,2019,176:20-29.

[6]余学康,杨斌,夏茹,等.聚乙烯/EVA共混体系相分离行为的动态流变研究[J].化工新型材料,2014,42(12):101-103.

[7]宋剑斌,杨文斌,陈丽红,等.ABS/PETG双连续相形态及流变性能研究[J].塑料工业,2013,41(5):101-104.

[8]李慧芳,贾军纪,黄安平,等.聚异丁烯的性能及应用[J].广东化工,2014,41(8):84;90.

[9]李波,张庆峰,王铎,等.甲基乙烯基硅橡胶的研究进展[J].合成材料老化与应用,2019,48(2):119-123.

[10]张小红,王浩,侯惠民.经皮给药系统中压敏胶的组成及性能的研究进展[J].中国医药工业杂志,2008(10):767-772.

[11]李艳梅,白露,王宇,等.HDPE/UHMWPE共混物的动态流变性能[J].高分子材料科学与工程,2011,27(1):100-103.

[12]杨凯.茂金属催化的乙烯-辛烯共聚物及其共混物的流变学研究[D].上海:上海交通大学,2007.

[13]谭宁,段文锋,王迎春,等.聚丙烯/聚烯烃弹性体三元共混物的动态流变行为及其相容性[J].石油化工,2017,46(7):896-901.

[14]HAVRILIAK S,NEGAMI S.A complex plane representation of dielectric and mechanical relaxation processes in some polymers[J].Polymer,1967,8:161-210.

[15]张旭亮,李润明,石家华.POM/MWNTs-PEG复合材料的流变及动态力学性能[J].郑州师范教育,2019,8(2):19-22.

基本信息:

DOI:10.13416/j.ca.2020.05.004

中图分类号:TQ333.93

引用信息:

[1]李艾浓,王玉峰,马滨等.聚异丁烯/甲基乙烯基硅橡胶互穿结构及其动态流变性能研究[J].中国胶粘剂,2020,29(05):10-14+28.DOI:10.13416/j.ca.2020.05.004.

基金信息:

广西自然科学基金(2018GXNSFAA281220)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文