nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2020, 05, v.29 20-23
钨/环氧树脂辐射防护复合材料制备以及原位拉伸性能和微观组织演变
基金项目(Foundation):
邮箱(Email):
DOI: 10.13416/j.ca.2020.05.006
摘要:

将硅烷偶联剂改性的钨粉加入到环氧树脂和固化剂中,制备了钨/环氧树脂辐射防护复合材料。通过扫描电镜、原位拉伸装置研究了钨含量80%(相对于整体质量而言)的钨/树脂基辐射防护复合材料的拉伸性能和微观组织演变。研究结果表明:钨含量80%的钨/环氧树脂辐射防护复合材料试样在拉伸过程中裂纹起始于材料中的钨粉团聚颗粒和气孔处,大量裂纹产生释放应力,较大的裂纹合并后试样发生断裂。硅烷偶联剂改性可以改善钨/环氧树脂复合材料的界面结合力,提升力学性能。改性后钨含量80%的钨/环氧树脂辐射防护复合材料的抗拉强度为8.49 MPa,最大应变为5.5%,大于纯钨的延伸率(3%),有利于加工成防辐射纤维材料。

Abstract:

Tungsten powder modified by silane coupling agent was added into epoxy resin and curing agent,and tungsten/epoxy resin composite material for radiation protection was then prepared. The tensile properties and microstructure evolution of tungsten/resin-based composite material for radiation protection with 80% tungsten content(relative to the total mass)were studied by scanning electron microscope and in-situ tensile device. The research results showed that during the tensile process,the cracks of tungsten/epoxy resin composite material sample for radiation protection with 80% tungsten content started at the agglomerated particles and pores of tungsten powder in the material,and a large number of cracks produced release stress,the larger cracks merged and the sample broke. Modification with silane coupling agent could improve the interface adhesion of tungsten/epoxy resin composite material and enhance mechanical properties. The tensile strength of tungsten/epoxy resin composite material for radiation protection with 80% tungsten content after modification was 8.49 MPa,the maximum strain was 5.5%,which was higher than the elongation of pure tungsten(3%),and was conducive to processing into radiation-proof fiber material.

参考文献

[1]刘显坤,刘颖,唐杰.辐射屏蔽材料的研究进展[J].材料导报,2016,20(6):32-35.

[2]杨植宗,邓磊,喻莉,等.核辐射及其安全防护[J].物理通报,2012,(2):117-120.

[3]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003.

[4]安骏,吴海霞,辛寅昌.防高能辐射的树脂/纳米铅复合材料的制备及研究[J].工程塑料应用,2004,32(12):14-17.

[5]邹树梁,颜亮,唐德文,等.高密度W-Ni-Fe合金制备与应用研究进展[J].南华大学学报(自然科学版),2015(1):53-59.

[6]何建洪,孙勇,段永华,等.射线与中子辐射屏蔽材料的研究进展[J].材料导报,2011(S2):347-351.

[7]袁楠.碳化硼铝基复合材料的制备及其力学性能的研究[D].合肥:合肥工业大学,2016.

[8]吕继新,陈建廷.高效能屏蔽材料铅硼聚乙烯[J].核动力工程,1994(4):370-374.

[9] WHETSTONE Z D,KEARFOTT K J. Use of multiple layers of repeating material to effectively collimate an isotropic neutron source[J]. Nuclear Technology,2011,176(3):395-413.

[10] AZMAN N Z N,SIDDIQUI S A,LOW I M.Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays[J].MaterialsScience&Engineering,2013,33(8):4952-4957.

[11]朱玲旭,燕青芝,郎少庭,等.钨基面向等离子体材料的研究进展[J].中国有色金属学报,2012,22(12):3522-3528.

[12] CHANG L,ZHANG Y,LIU Y J,et al. Preparation and characterization of tungsten/epoxy composites for gammarays radiation shielding[J]. Nuclear Instruments and Methods in Physics Research B,2015(356):88-93.

[13]王雪明,李爱菊,李国丽,等.金属表面制备KH-560硅烷膜涂层的工艺研究[J].中国表面工程,2004,17(6):27-31.

基本信息:

DOI:10.13416/j.ca.2020.05.006

中图分类号:TB333

引用信息:

[1]高建平,葛鹏.钨/环氧树脂辐射防护复合材料制备以及原位拉伸性能和微观组织演变[J].中国胶粘剂,2020,29(05):20-23.DOI:10.13416/j.ca.2020.05.006.

基金信息:

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文