13 | 0 | 8 |
下载次数 | 被引频次 | 阅读次数 |
智能黏附界面,尤其是按需切换黏附力的界面,在可穿戴设备、机器人和生物检测等领域展现出巨大的应用潜力。本文聚焦于三种代表性仿生对象——壁虎、树蛙和章鱼,利用JKR模型、毛细管湿黏附模型和吸力负压模型分别解释三者黏附机制,并系统剖析了仿生可切换黏附领域(如攀爬机器人、软夹具和可穿戴设备等)的多种仿生智能黏附界面以及研究现状。最后对仿生智能黏附界面的未来发展进行了展望。
Abstract:The intelligent adhesion interface,especially the interface that switches adhesion force on demand,has shown great potential for applications in wearable devices,robots,and biological detection. Three representative biomimetic objects—gecko,tree frog,and octopus were focused in this article. The JKR model,capillary wet adhesion model,and suction negative-pressure model were used to explain the adhesion mechanisms of three objects,and the various biomimetic intelligent adhesion interfaces and research status in the field of biomimetic switchable adhesion(such as climbing robot,soft fixture,and wearable device) were systematically analyzed.Finally,the future development of biomimetic intelligent adhesion interface was discussed.
[1]宫永宽,史素青.仿贻贝黏附蛋白黏合剂材料研究进展[J].中国胶粘剂,2012,21(11):56-59.
[2]鲁文茜,沈尚竹,赵亚丽,等.仿贻贝邻苯二酚改性壳聚糖在生物医学领域的应用及研究进展[J].中国胶粘剂,2020,29(11):56-60;66.
[3] MI Y,NIU Y,NI H,et al. Gecko inspired reversible adhesion via quantum dots enabled photo-detachment[J].Chemical Engineering Journal,2022,431:134081.
[4] LIU Q,MENG F,WANG X,et al. Tree frog-inspired micropillar arrays with nanopits on the surface for enhanced adhesion under wet conditions[J]. ACS Applied Materials&Interfaces,2020,12(16):19116-19122.
[5] HWANG G W,LEE H J,KIM D W,et al. Soft microdenticles on artificial octopus sucker enable extraordinary adaptability and wet adhesion on diverse nonflat surfaces[J].Advanced Science,2022,9(31):2202978.
[6] WANG Y,LIU D,WANG C,et al. 3D printing of octopiinspired hydrogel suckers with underwater adaptation for reversible adhesion[J]. Chemical Engineering Journal,2023,457:141268.
[7] DUAN W,YU Z,CUI W,et al. Bio-inspired switchable soft adhesion for the boost of adhesive surfaces and robotics applications:A brief review[J]. Advances in Colloid and Interface Science,2023,313:102862.
[8] AUTUMN K,LIANG Y A,HSIEH S T,et al. Adhesive force of a single gecko foot-hair[J]. Nature,2000,405(6787):681-685.
[9] YANG S Y,O'CEARBHAILL E D,SISK G C,et al. A bioinspired swellable microneedle adhesive for mechanical interlocking with tissue[J].Nature Communications,2013,4(1):1702.
[10] LI M,DAI Q,JIAO Q,et al. Magnetically stimulating capillary effect for reversible wet adhesions[J].Soft Matter,2019,15(13):2817-2825.
[11] WU M,ZHENG X,LIU R,et al. Glowing sucker octopus(stauroteuthis syrtensis)-inspired soft robotic gripper for underwater self-adaptive grasping and sensing[J]. Advanced Science,2022,9(17):2104382.
[12] WANG J,WAN Y,WANG X,et al. Bioinspired smart materials with externally-stimulated switchable adhesion[J].Frontiers in Nanotechnology,2021,3:667287.
[13] EBRAHIMI N,BI C,CAPPELLERI D J,et al. Magnetic actuation methods in bio/soft robotics[J]. Advanced Functional Materials,2021,31(11):2005137.
[14] LIU X,JIA L,LI Y,et al. Shape memory arrays top coated by adjustable mushroom with switchable adhesion to both solid and liquid[J].Advanced Functional Materials,2024,34(14):2312869.
[15]宋永香,王志政.海洋生物及其黏附机理——微生物、小型海藻、巨型海藻、贻贝[J].中国胶粘剂,2002,9(4):48-52.
[16] ARZT E,GORB S,SPOLENAK R. From micro to nano contacts in biological attachment devices[J].Proceedings of the National Academy of Sciences,2003,100(19):10603-10606.
[17] FEDERLE W,BARNES W J P,BAUMGARTNER W,et al. Wet but not slippery:Boundary friction in tree frog adhesive toe pads[J].Journal of the Royal Society Interface,2006,3(10):689-697.
[18] BAGHERI H,HU A,CUMMINGS S,et al. New insights on the control and function of octopus suckers[J]. Advanced Intelligent Systems,2020,2(6):1900154.
[19]赖添茂.基于接触几何的微纳米尺度下的粘着研究[D].广州:华南理工大学,2014.
[20] HANNA G,BARNES W J P. Adhesion and detachment of the toe pads of tree frogs[J]. Journal of Experimental Biology,1991,155(1):103-125.
[21] SHEN C,CHENG Y,PENG Z,et al. Switchable adhesion of gecko-inspired hierarchically wedge-mushroom-shaped surface[J]. Chemical Engineering Journal,2024,488:150900.
[22] ZHANG Z,HE B,HAN Q,et al. Femtosecond laser direct writing of gecko-inspired switchable adhesion interfaces on a flexible substrate[J]. Micromachines,2023,14(9):1742.
[23] SHI X,YANG L,LI S,et al. Magnetic-field-driven switchable adhesion of NdFeB/PDMS composite with gecko-like surface[J].Nano Research,2023,16(5):6840-6848.
[24] PANG C, KIM J K, WU Y, et al. Bioinspired microstructured adhesives with facile and fast switchability for part manipulation in dry and wet conditions[J].Advanced Functional Materials,2023,33(38):2303116.
[25] HE B,WANG Z,LI M,et al. Wet adhesion inspired bionic climbing robot[J].IEEE/ASME Transactions on Mechatronics,2013,19(1):312-320.
[26] ZHANG L,CHEN H,GUO Y,et al. Micro-nano hierarchical structure enhanced strong wet friction surface inspired by tree frogs[J].Advanced Science,2020,7(20):2001125.
[27] LI Y,LIU X,WANG R,et al. Triple-bioinspired shape memory microcavities with strong and switchable adhesion[J].ACS Nano,2023,17(23):23595-23607.
[28] BAIK S,KIM D W,PARK Y,et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi[J].Nature,2017,546(7658):396-400.
[29] FREY S T,HAQUE A B M T,TUTIKA R,et al. Octopusinspired adhesive skins for intelligent and rapidly switchable underwater adhesion[J].Science Advances,2022,8(28):1905.
[30]车超越,袁坤山,张淑欣,等.医用仿生黏合剂的研究进展[J].中国胶粘剂,2021,30(10):62-66.
[31]袁坤山,王如蒙,刘黎明,等.医用软组织黏合剂的研究进展[J].中国胶粘剂,2019,28(11):48-56.
[32] HE Q S,ZHAO Z F,ZHONG Q,et al. Switchable shape memory polymer bio-inspired adhesive and its application for unmanned aerial vehicle landing[J].Chinese Journal of Aeronautics,2024,37(3):380-390.
[33] HENREY M,AHMED A,BOSCARIOL P,et al. AbigailleIII:A versatile,bioinspired hexapod for scaling smooth vertical surfaces[J]. Journal of Bionic Engineering,2014,11(1):1-17.
[34] TIAN H,LI X,SHAO J,et al. Gecko-effect inspired soft gripper with high and switchable adhesion for rough surfaces[J]. Advanced Materials Interfaces,2019,6(18):1900875.
[35] GWON M,PARK G,HONG D,et al. Soft directional adhesion gripper fabricated by 3D printing process for gripping flexible printed circuit boards[J]. International Journal of Precision Engineering and ManufacturingGreen Technology,2022:1-13.
[36] LEE Y W,CHUN S,SON D,et al. A tissue adhesioncontrollable and biocompatible small-scale hydrogel adhesive robot[J]. Advanced Materials,2022,34(13):2109325.
[37] CHOI G,KIM J,KIM H,et al. Motion-adaptive tessellated skin patches with switchable adhesion for wearable electronics[J].Advanced Materials,2024:2412271.
基本信息:
DOI:10.13416/j.ca.2025.06.001
中图分类号:TB391;TQ430.1
引用信息:
[1]周建伟,姚燕生,阚宏林.仿生智能黏附界面的研究现状[J].中国胶粘剂,2025,34(06):10-17.DOI:10.13416/j.ca.2025.06.001.
基金信息:
安徽省自然科学基金面上项目(1908085ME130); 安徽省农业物质技术装备揭榜挂帅暨农机补短板项目(KZ22023128)